Homework 2 (Due 02/05/2014)

Math 622

January 31, 2014

Change: Problem 4 (vi) fixed typos, delete σ_1 in the first equation, changed dM(t) in the second equation to $dN_1(t)$

1. Let N be a Poisson process with rate λ and filtration $\mathcal{F}(t)$. Define

$$Y(t) := \exp\left(uN(t) - \lambda t(e^u - 1)\right),$$

that is Y is the exponential martingale associated with N. Use stochastic calculus (Ito's formula) for jump processes to show that

$$Y(t) = 1 + \int_0^t (e^u - 1)Y(s -)dM(s),$$

where $M(t) = N(t) - \lambda t$ and conclude that Y(t) is a martingale w.r.t $\mathcal{F}(t)$.

2. Let $N_1(t), N_2(t)$ be independent Poisson processes with rate λ_1, λ_2 and $\mathcal{F}(t)$ a filtration for both N_1, N_2 . Also define $M_i(t) = N_i(t) - \lambda_i t, i = 1, 2$.

(i) Show that the probability that N_1 and N_2 have the same jump time is 0 (Hint: Apply two dimensional Ito's formula for processes with jumps to $M_1(t)M_2(t)$ and take expectations on both sides).

(ii) Let

$$Y(t) = \exp\left(u_1 N_1(t) + u_2 N_2(t) - \lambda_1 t(e^{u_1} - 1) - \lambda_2 t(e^{u_2} - 1)\right).$$

Use a similar technique like problem 1 (i.e do not use direct computation) to show hat Y(t) is a martingale with respect to $\mathcal{F}(t)$. (Part (i) may also be helpful here).

3. The converse of 2 (ii) is also true: if Y(t) is a martingale for any u_1, u_2 then N_1, N_2 are independent Poisson processes with rate λ_1, λ_2 . You may use this fact in this problem.

On a probability space (Ω, \mathbb{P}) let N_1, N_2 be independent Poisson processes with rate λ_1, λ_2 and $\mathcal{F}(t)$ a filtration for N_1, N_2 . Fix a_1, a_2 . Define the probability \mathbb{Q} by

$$Z(T) := \exp\left[a_1 N_1(T) + a_2 N_2(T) - \lambda_1 T(e^{a_1} - 1) - \lambda_2 T(e^{a_2} - 1)\right]$$

$$d\mathbb{Q} = Z(T)d\mathbb{P}.$$

(i) Show that under \mathbb{Q} , N_1, N_2 are independent Poisson processes with rates $\lambda_1 e^{a_1}, \lambda_2 e^{a_2}$ respectively.

(ii) Find Z(T) so that if we define $d\mathbb{Q} = Z(T)d\mathbb{P}$ then N_1, N_2 are independent Poisson processes with rates \tilde{a}_1, \tilde{a}_2 respectively.

4. On a probability space (Ω, \mathbb{P}) let N_1, N_2 be independent Poisson processes with rate λ_1, λ_2 and $\mathcal{F}(t)$ a filtration for N_1, N_2 . Assume $b_1 > 0 > b_2 > -1$ and let

$$Q(t) := b_1 N_1(t) + b_2 N_2(t).$$

(i) Find m so that M(t) = Q(t) - mt is a $\mathcal{F}(t)$ -martingale.

(ii) Consider the price model

$$dS(t) = \alpha S(t)dt + S(t-)dM(t), S(0) = 1.$$

Write down a solution in the form $S(t) = Ke^{a_0t + a_1N_1(t) + a_2N_2(t)}$; identify the constants a_0, a_1, a_2 and K.

(iii) Let $\alpha = r$, where r is the risk free interest rate, for the model in part (ii), then the measure \mathbb{P} is risk-neutral. So the price of a Euro-call option that pays $V(T) = (S(T) - K)^+$ at time T is

$$V(t) = e^{-r(T-t)} \mathbb{E}[(S(T) - K)^+ | \mathcal{F}(t)].$$

Find an explicit formular for V(t) in the style of the formula (11.7.3) on page 507 of Shreve. Your final answer will be a doubly infinite sum.

(iv) Suppose now that $a \neq r$ for the model in part (ii). Show how we can define a risk-neutral measure \mathbb{Q} for the model in (ii) (Hint: use the result in 3 (ii)).

(v) Show that there are in fact many different risk-neutral measures for the setting in (iv).

(vi) Suppose that now we consider a market with 2 assets:

$$dS_1(t) = \alpha_1 S_1(t) dt + S_1(t-) dM(t), S_1(0) = 1$$

$$dS_2(t) = \alpha_2 S_2(t) dt + \sigma_2 S_2(t-) dN_1(t), S_2(0) = 1,$$

where $\sigma_2 > 0$. A risk neural probability \mathbb{Q} for this market must be such that $e^{-rt}S_1(t)$ and $e^{-rt}S_2(t)$ are $\mathcal{F}(t)$ martingales under \mathbb{Q} . Show how we can define a risk neutral measure \mathbb{Q} for this market. What conditions must $\alpha_1, \alpha_2, \sigma_1, \sigma_2, \lambda_1, \lambda_2, r$ satisfy for this measure change to be valid? When is \mathbb{Q} unique? (It is helpful to look at the discussion in Shreve's pagge 516).

5. Let $T_i, i = 1, ..., k$ be independent exponentially distributed random variables with rate $\lambda_i, i = 1, ..., k$.

(i) Let $U=\min_{i=1,\dots,k}T_i$ and $V=\max_{i=1,\dots,k}T_i$. Find the density functions of U and V.

- (ii) Show that $P(T_1 < T_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$.
- 6.

(i) Suppose S_t satisfies

$$S(t) = 1 + \int_0^t \alpha S(u) du + \sum_{0 < u \le t} \Delta J(u),$$

where J(u) is a pure jump function. Solve for an explicit formula for S(t). Explanation: So far we've studied the model of

$$S(t) = 1 + \int_0^t \alpha S(u) du + \int_0^t S(u) dJ(u)$$

= $1 + \int_0^t \alpha S(u) du + \sum_{0 < u \le t} S(u) \Delta J(u)$

It is natural to ask how the solution changes if the term S(u-) disappears in the equation. There are 2 ways to solve this question: a) let $0 < t_1 < t_2 < ...$ be the jump times of J. Solve for S(t) on each interval $t_i < t < t_{i+1}$ (note the strict inequality) and consider what happens at each t_i . b) Note that we have a simpler way to write $\sum_{0 < u \leq t} \Delta J(u)$. Apply Ito's formula to $e^{-\alpha t}S_t$ and see what happens.

(ii) Now suppose S_t satisfies

$$S(t) = 1 + \int_0^t \alpha(u) S(u) du + \sum_{0 < u \le t} \sigma \Delta J(u).$$

Solve for an explicit formula for S(t).