Homework 2 (Due 02/05/2014)

Math 622
January 31, 2014

Change: Problem 4 (vi) fixed typos, delete σ_{1} in the first equation, changed $d M(t)$ in the second equation to $d N_{1}(t)$

1. Let N be a Poisson process with rate λ and filtration $\mathcal{F}(t)$. Define

$$
Y(t):=\exp \left(u N(t)-\lambda t\left(e^{u}-1\right)\right)
$$

that is Y is the exponential martingale associated with N. Use stochastic calculus (Ito's formula) for jump processes to show that

$$
Y(t)=1+\int_{0}^{t}\left(e^{u}-1\right) Y(s-) d M(s)
$$

where $M(t)=N(t)-\lambda t$ and conclude that $Y(t)$ is a martingale w.r.t $\mathcal{F}(t)$.
2. Let $N_{1}(t), N_{2}(t)$ be independent Poisson processes with rate λ_{1}, λ_{2} and $\mathcal{F}(t)$ a filtration for both N_{1}, N_{2}. Also define $M_{i}(t)=N_{i}(t)-\lambda_{i} t, i=1,2$.
(i) Show that the probability that N_{1} and N_{2} have the same jump time is 0 (Hint: Apply two dimensional Ito's formula for processes with jumps to $M_{1}(t) M_{2}(t)$ and take expectations on both sides).
(ii) Let

$$
Y(t)=\exp \left(u_{1} N_{1}(t)+u_{2} N_{2}(t)-\lambda_{1} t\left(e^{u_{1}}-1\right)-\lambda_{2} t\left(e^{u_{2}}-1\right)\right) .
$$

Use a similar technique like problem 1 (i.e do not use direct computation) to show hat $Y(t)$ is a martingale with respect to $\mathcal{F}(t)$. (Part (i) may also be helpful here).
3. The converse of 2 (ii) is also true: if $Y(t)$ is a martingale for any u_{1}, u_{2} then N_{1}, N_{2} are independent Poisson processes with rate λ_{1}, λ_{2}. You may use this fact in this problem.

On a probability space (Ω, \mathbb{P}) let N_{1}, N_{2} be independent Poisson processes with rate λ_{1}, λ_{2} and $\mathcal{F}(t)$ a filtration for N_{1}, N_{2}. Fix a_{1}, a_{2}. Define the probability \mathbb{Q} by

$$
\begin{aligned}
Z(T) & :=\exp \left[a_{1} N_{1}(T)+a_{2} N_{2}(T)-\lambda_{1} T\left(e^{a_{1}}-1\right)-\lambda_{2} T\left(e^{a_{2}}-1\right)\right] \\
d \mathbb{Q} & =Z(T) d \mathbb{P} .
\end{aligned}
$$

(i) Show that under \mathbb{Q}, N_{1}, N_{2} are independent Poisson processes with rates $\lambda_{1} e^{a_{1}}, \lambda_{2} e^{a_{2}}$ respectively.
(ii) Find $Z(T)$ so that if we define $d \mathbb{Q}=Z(T) d \mathbb{P}$ then N_{1}, N_{2} are independent Poisson processes with rates $\tilde{a}_{1}, \tilde{a}_{2}$ respectively.
4. On a probability space (Ω, \mathbb{P}) let N_{1}, N_{2} be independent Poisson processes with rate λ_{1}, λ_{2} and $\mathcal{F}(t)$ a filtration for N_{1}, N_{2}. Assume $b_{1}>0>b_{2}>-1$ and let

$$
Q(t):=b_{1} N_{1}(t)+b_{2} N_{2}(t) .
$$

(i) Find m so that $M(t)=Q(t)-m t$ is a $\mathcal{F}(t)$-martingale.
(ii) Consider the price model

$$
d S(t)=\alpha S(t) d t+S(t-) d M(t), S(0)=1
$$

Write down a solution in the form $S(t)=K e^{a_{0} t+a_{1} N_{1}(t)+a_{2} N_{2}(t)}$; identify the constants a_{0}, a_{1}, a_{2} and K.
(iii) Let $\alpha=r$, where r is the risk free interest rate, for the model in part (ii), then the measure \mathbb{P} is risk-neutral. So the price of a Euro-call option that pays $V(T)=(S(T)-K)^{+}$at time T is

$$
V(t)=e^{-r(T-t)} \mathbb{E}\left[(S(T)-K)^{+} \mid \mathcal{F}(t)\right] .
$$

Find an explicit formular for $V(t)$ in the style of the formula (11.7.3) on page 507 of Shreve. Your final answer will be a doubly infinite sum.
(iv) Suppose now that $a \neq r$ for the model in part (ii). Show how we can define a risk-neutral measure \mathbb{Q} for the model in (ii) (Hint: use the result in 3 (ii)).
(v) Show that there are in fact many different risk-neutral measures for the setting in (iv).
(vi) Suppose that now we consider a market with 2 assets:

$$
\begin{array}{r}
d S_{1}(t)=\alpha_{1} S_{1}(t) d t+S_{1}(t-) d M(t), S_{1}(0)=1 \\
d S_{2}(t)=\alpha_{2} S_{2}(t) d t+\sigma_{2} S_{2}(t-) d N_{1}(t), S_{2}(0)=1,
\end{array}
$$

where $\sigma_{2}>0$. A risk neural probability \mathbb{Q} for this market must be such that $e^{-r t} S_{1}(t)$ and $e^{-r t} S_{2}(t)$ are $\mathcal{F}(t)$ martingales under \mathbb{Q}. Show how we can define a risk neutral measure \mathbb{Q} for this market. What conditions must $\alpha_{1}, \alpha_{2}, \sigma_{1}, \sigma_{2}, \lambda_{1}, \lambda_{2}, r$ satisfy for this measure change to be valid? When is \mathbb{Q} unique? (It is helpful to look at the discussion in Shreve's pagge 516).
5. Let $T_{i}, i=1, \ldots, k$ be independent exponentially distributed random variables with rate $\lambda_{i}, i=1, \ldots, k$.
(i) Let $U=\min _{i=1, \ldots, k} T_{i}$ and $V=\max _{i=1, \ldots, k} T_{i}$. Find the density functions of U and V.
(ii) Show that $P\left(T_{1}<T_{2}\right)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$.
6.
(i) Suppose S_{t} satisfies

$$
S(t)=1+\int_{0}^{t} \alpha S(u) d u+\sum_{0<u \leq t} \Delta J(u)
$$

where $J(u)$ is a pure jump function. Solve for an explicit formula for $S(t)$.
Explanation: So far we've studied the model of

$$
\begin{aligned}
S(t) & =1+\int_{0}^{t} \alpha S(u) d u+\int_{0}^{t} S(u-) d J(u) \\
& =1+\int_{0}^{t} \alpha S(u) d u+\sum_{0<u \leq t} S(u-) \Delta J(u)
\end{aligned}
$$

It is natural to ask how the solution changes if the term $S(u-)$ disappears in the equation. There are 2 ways to solve this question: a) let $0<t_{1}<t_{2}<\ldots$ be the jump times of J. Solve for $S(t)$ on each interval $t_{i}<t<t_{i+1}$ (note the strict inequality) and consider what happens at each t_{i}. b) Note that we have a simpler way to write $\sum_{0<u \leq t} \Delta J(u)$. Apply Ito's formula to $e^{-\alpha t} S_{t}$ and see what happens.
(ii) Now suppose S_{t} satisfies

$$
S(t)=1+\int_{0}^{t} \alpha(u) S(u) d u+\sum_{0<u \leq t} \sigma \Delta J(u)
$$

Solve for an explicit formula for $S(t)$.

